Highest vectors of representations (total 9) ; the vectors are over the primal subalgebra. | \(h_{4}\) | \(g_{8}\) | \(g_{11}\) | \(g_{13}\) | \(g_{14}\) | \(g_{6}\) | \(g_{12}\) | \(g_{2}\) | \(g_{16}\) |
weight | \(0\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(\omega_{2}+\omega_{3}\) | \(\omega_{2}+\omega_{3}\) | \(2\omega_{3}\) | \(2\omega_{1}+\omega_{2}+\omega_{3}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(2\omega_{1}-2\psi\) | \(2\omega_{1}\) | \(2\omega_{1}+2\psi\) | \(2\omega_{2}\) | \(\omega_{2}+\omega_{3}-2\psi\) | \(\omega_{2}+\omega_{3}+2\psi\) | \(2\omega_{3}\) | \(2\omega_{1}+\omega_{2}+\omega_{3}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0, 0) | \(\displaystyle V_{2\omega_{1}-2\psi} \) → (2, 0, 0, -2) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0, 0) | \(\displaystyle V_{2\omega_{1}+2\psi} \) → (2, 0, 0, 2) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0, 0) | \(\displaystyle V_{\omega_{2}+\omega_{3}-2\psi} \) → (0, 1, 1, -2) | \(\displaystyle V_{\omega_{2}+\omega_{3}+2\psi} \) → (0, 1, 1, 2) | \(\displaystyle V_{2\omega_{3}} \) → (0, 0, 2, 0) | \(\displaystyle V_{2\omega_{1}+\omega_{2}+\omega_{3}} \) → (2, 1, 1, 0) | |||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | |||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
| Semisimple subalgebra component.
|
| Semisimple subalgebra component.
|
|
| Semisimple subalgebra component.
|
| |||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(\omega_{2}+\omega_{3}\) \(-\omega_{2}+\omega_{3}\) \(\omega_{2}-\omega_{3}\) \(-\omega_{2}-\omega_{3}\) | \(\omega_{2}+\omega_{3}\) \(-\omega_{2}+\omega_{3}\) \(\omega_{2}-\omega_{3}\) \(-\omega_{2}-\omega_{3}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(2\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{2}+\omega_{3}\) \(2\omega_{1}-\omega_{2}+\omega_{3}\) \(2\omega_{1}+\omega_{2}-\omega_{3}\) \(-2\omega_{1}+\omega_{2}+\omega_{3}\) \(-\omega_{2}+\omega_{3}\) \(\omega_{2}-\omega_{3}\) \(2\omega_{1}-\omega_{2}-\omega_{3}\) \(-2\omega_{1}-\omega_{2}+\omega_{3}\) \(-2\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{2}-\omega_{3}\) \(-2\omega_{1}-\omega_{2}-\omega_{3}\) | |||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(2\omega_{1}-2\psi\) \(-2\psi\) \(-2\omega_{1}-2\psi\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}+2\psi\) \(2\psi\) \(-2\omega_{1}+2\psi\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(\omega_{2}+\omega_{3}-2\psi\) \(-\omega_{2}+\omega_{3}-2\psi\) \(\omega_{2}-\omega_{3}-2\psi\) \(-\omega_{2}-\omega_{3}-2\psi\) | \(\omega_{2}+\omega_{3}+2\psi\) \(-\omega_{2}+\omega_{3}+2\psi\) \(\omega_{2}-\omega_{3}+2\psi\) \(-\omega_{2}-\omega_{3}+2\psi\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(2\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{2}+\omega_{3}\) \(2\omega_{1}-\omega_{2}+\omega_{3}\) \(2\omega_{1}+\omega_{2}-\omega_{3}\) \(-2\omega_{1}+\omega_{2}+\omega_{3}\) \(-\omega_{2}+\omega_{3}\) \(\omega_{2}-\omega_{3}\) \(2\omega_{1}-\omega_{2}-\omega_{3}\) \(-2\omega_{1}-\omega_{2}+\omega_{3}\) \(-2\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{2}-\omega_{3}\) \(-2\omega_{1}-\omega_{2}-\omega_{3}\) | |||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}-2\psi}\oplus M_{-2\psi}\oplus M_{-2\omega_{1}-2\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+2\psi}\oplus M_{2\psi}\oplus M_{-2\omega_{1}+2\psi}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{\omega_{2}+\omega_{3}-2\psi}\oplus M_{-\omega_{2}+\omega_{3}-2\psi}\oplus M_{\omega_{2}-\omega_{3}-2\psi}\oplus M_{-\omega_{2}-\omega_{3}-2\psi}\) | \(\displaystyle M_{\omega_{2}+\omega_{3}+2\psi}\oplus M_{-\omega_{2}+\omega_{3}+2\psi}\oplus M_{\omega_{2}-\omega_{3}+2\psi}\oplus M_{-\omega_{2}-\omega_{3}+2\psi}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}+\omega_{3}}\oplus M_{\omega_{2}+\omega_{3}}\oplus M_{2\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{2\omega_{1}+\omega_{2}-\omega_{3}} \oplus M_{-2\omega_{1}+\omega_{2}+\omega_{3}}\oplus M_{-\omega_{2}+\omega_{3}}\oplus M_{\omega_{2}-\omega_{3}}\oplus M_{2\omega_{1}-\omega_{2}-\omega_{3}} \oplus M_{-2\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{-2\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{-\omega_{2}-\omega_{3}} \oplus M_{-2\omega_{1}-\omega_{2}-\omega_{3}}\) | |||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}-2\psi}\oplus M_{-2\psi}\oplus M_{-2\omega_{1}-2\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+2\psi}\oplus M_{2\psi}\oplus M_{-2\omega_{1}+2\psi}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{\omega_{2}+\omega_{3}-2\psi}\oplus M_{-\omega_{2}+\omega_{3}-2\psi}\oplus M_{\omega_{2}-\omega_{3}-2\psi}\oplus M_{-\omega_{2}-\omega_{3}-2\psi}\) | \(\displaystyle M_{\omega_{2}+\omega_{3}+2\psi}\oplus M_{-\omega_{2}+\omega_{3}+2\psi}\oplus M_{\omega_{2}-\omega_{3}+2\psi}\oplus M_{-\omega_{2}-\omega_{3}+2\psi}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}+\omega_{3}}\oplus M_{\omega_{2}+\omega_{3}}\oplus M_{2\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{2\omega_{1}+\omega_{2}-\omega_{3}} \oplus M_{-2\omega_{1}+\omega_{2}+\omega_{3}}\oplus M_{-\omega_{2}+\omega_{3}}\oplus M_{\omega_{2}-\omega_{3}}\oplus M_{2\omega_{1}-\omega_{2}-\omega_{3}} \oplus M_{-2\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{-2\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{-\omega_{2}-\omega_{3}} \oplus M_{-2\omega_{1}-\omega_{2}-\omega_{3}}\) |